Post Top Ad

Sunday, November 5, 2023

How to make ac to dc converter connection at home diagram


 This video is only for educational purposes. High voltage can damage your life. Some works can be dangerous. And for that, you don't risk and damage your self. I am professional in my work. You should take care or precautions before attempting the experiment or work.

Every once in a while I come up with an idea for a circuit or device that has applications where a battery may not be the best or most convenient option for a power supply. One example is the Motion Activated AC Switch that I built. Since I was wanting to have the switch open a relay to allow AC current to pass through, it made sense to me to make the timer circuit inside utilize the AC power that was already there. I also don't want to have to open the box every time the battery dies. That required rectifying and regulating the 120VAC mains to a stable 9VDC. The problem is that it's AC, and most people are understandably nervous about working directly with AC mains. Hopefully I can dispel that fear with this Instructable.


Before we begin, a word of caution. AC MAINS VOLTAGE IS EXTREMELY DANGEROUS!!! You must be extremely careful. This Instructable is meant to help overcome the anxiety that comes with working with AC, but don't think that I don't get the chills every time I plug in the cord so I can test the circuit. I'm not trying to downplay the dangers involved. Take your time with it. Check your work, then check it again. Be aware of where the exposed wires are. Make sure that your workstation is either isolated from other people or that they are fully aware of what you are doing. I only work with mine in my office with the door locked so the kids can't physically interrupt me. That being said, I am not responsible in any way for anything that you do. Only you can know if you should proceed or not. When you get to the point where you feel comfortable, stop and do a mental check. Don't ever get comfortable or complacent with things that can seriously hurt you.

Most consumer electronics regulate the AC mains to DC. Some have a big, black, hurky wall wart that is unsightly and nearly impossible to plug more than one into a power strip without taking up two or three slots each. Others have the conversion circuitry built inside. A large part of the weight of the device is actually the transformer itself, which is usually made of several steel plates sandwiched and then epoxied together, and two or more windings of coated copper wire. Each winding can be any where from a just a few to several thousand turns. The number of windings determines how much change in voltage you will get out. When a current is introduced through one winding (or coil), it creates a magnetic field, with poles forming along the winding axis. If another coil is placed nearby, along the same axis, the magnetic field will induce a current, and thus a voltage, in the second coil. Adding a magnetically permeable core between the two greatly enhances the effect, reducing loss. Since the two windings are both made using insulated wire, you can wrap one around the other, with both wrapped around the core. This is very efficient and space saving, especially since you can add several separate windings to get whatever voltages you want out. Computer power supplies do this. The only thing is that the output is always AC, since for the magnetic coupling to work, the magnetic field must change polarity. The only way to do that is by using AC current, which switches between positive and negative voltages at 50-60Hz. In order for electronic circuits to work, we must convert this step-down AC voltage to a flat, stable DC voltage.


That's where the bridge rectifier comes in, and in this case a full-wave rectifier. We can make it out of individual discrete diodes or use one that is purpose built. The idea is that we switch the negative AC pulses to positive pulses, and leave the already positive pulses there. There is some voltage loss due to the voltage requirements of the diodes, but it is minimal and if you plan for it, it won't affect the outcome at all. The end result is a pulsed DC voltage, going from 0 to maximum voltage at 120Hz. We use a capacitor across the '+' and '-' terminals to smooth out the ripples. As the voltage rises from 0 to max, the capacitor charges. When the voltage starts to drop, the capacitor discharges through the circuit but at a much slower rate, in effect holding the voltage up while the supply drops to 0 and then rises again. Once the voltage rises to where the capacitor voltage is, it recharges the capacitor and surges back to max again. Larger capacitors will allow the voltage to stay higher longer, so you get less rippling. As long as the ripple doesn't get below a certain value, e.g. +12VDC, we can use that to power a voltage regulator, which simply stabilizes the wobbly input voltage to a specific output voltage. Full-wave rectifiers are better here than half-wave, since there is less timetween the high and low pulses, resulting in a more stable output.


Schematics are shown for full-wave rectification using a center-tapped transformer and for half-wave rectification if you are interested. For the rest of this Instructable, I will be using a variation of the full-wave schematic shown in image 1

You will only need a few parts for this circuit. I salvage parts where I can, so you may even be able to salvage the entire AC/DC conversion circuit from something that already has it built onto a board. The side of the transformer where the AC power cable connects is the primary winding side. The secondary winding side will be connected to the bridge rectifier. Use your multi-meter to carefully check the output voltage on the secondary pins when the power cable is plugged in. The reading should be 1/10 to 1/5 of your mains voltage, which is 12-24VAC in the U.S. If you are using 220VAC mains, you will need a transformer that has a 10:1 step down ratio because most voltage regulators can't handle more than about 35VDC input. Also be aware of the power requirements for your circuit. Transformers do have current limitations and voltage regulators can usually only source 1 amp max, and only when you have a proper heat sink attached. Fuses are a good thing if you're unsure.


 This video is only for educational purposes. High voltage can damage your life. Some works can be dangerous. And for that, you don't risk and damage your self. I am professional in my work. You should take care or precautions before attempting the experiment or work.

Every once in a while I come up with an idea for a circuit or device that has applications where a battery may not be the best or most convenient option for a power supply. One example is the Motion Activated AC Switch that I built. Since I was wanting to have the switch open a relay to allow AC current to pass through, it made sense to me to make the timer circuit inside utilize the AC power that was already there. I also don't want to have to open the box every time the battery dies. That required rectifying and regulating the 120VAC mains to a stable 9VDC. The problem is that it's AC, and most people are understandably nervous about working directly with AC mains. Hopefully I can dispel that fear with this Instructable.


Before we begin, a word of caution. AC MAINS VOLTAGE IS EXTREMELY DANGEROUS!!! You must be extremely careful. This Instructable is meant to help overcome the anxiety that comes with working with AC, but don't think that I don't get the chills every time I plug in the cord so I can test the circuit. I'm not trying to downplay the dangers involved. Take your time with it. Check your work, then check it again. Be aware of where the exposed wires are. Make sure that your workstation is either isolated from other people or that they are fully aware of what you are doing. I only work with mine in my office with the door locked so the kids can't physically interrupt me. That being said, I am not responsible in any way for anything that you do. Only you can know if you should proceed or not. When you get to the point where you feel comfortable, stop and do a mental check. Don't ever get comfortable or complacent with things that can seriously hurt you.

Most consumer electronics regulate the AC mains to DC. Some have a big, black, hurky wall wart that is unsightly and nearly impossible to plug more than one into a power strip without taking up two or three slots each. Others have the conversion circuitry built inside. A large part of the weight of the device is actually the transformer itself, which is usually made of several steel plates sandwiched and then epoxied together, and two or more windings of coated copper wire. Each winding can be any where from a just a few to several thousand turns. The number of windings determines how much change in voltage you will get out. When a current is introduced through one winding (or coil), it creates a magnetic field, with poles forming along the winding axis. If another coil is placed nearby, along the same axis, the magnetic field will induce a current, and thus a voltage, in the second coil. Adding a magnetically permeable core between the two greatly enhances the effect, reducing loss. Since the two windings are both made using insulated wire, you can wrap one around the other, with both wrapped around the core. This is very efficient and space saving, especially since you can add several separate windings to get whatever voltages you want out. Computer power supplies do this. The only thing is that the output is always AC, since for the magnetic coupling to work, the magnetic field must change polarity. The only way to do that is by using AC current, which switches between positive and negative voltages at 50-60Hz. In order for electronic circuits to work, we must convert this step-down AC voltage to a flat, stable DC voltage.


That's where the bridge rectifier comes in, and in this case a full-wave rectifier. We can make it out of individual discrete diodes or use one that is purpose built. The idea is that we switch the negative AC pulses to positive pulses, and leave the already positive pulses there. There is some voltage loss due to the voltage requirements of the diodes, but it is minimal and if you plan for it, it won't affect the outcome at all. The end result is a pulsed DC voltage, going from 0 to maximum voltage at 120Hz. We use a capacitor across the '+' and '-' terminals to smooth out the ripples. As the voltage rises from 0 to max, the capacitor charges. When the voltage starts to drop, the capacitor discharges through the circuit but at a much slower rate, in effect holding the voltage up while the supply drops to 0 and then rises again. Once the voltage rises to where the capacitor voltage is, it recharges the capacitor and surges back to max again. Larger capacitors will allow the voltage to stay higher longer, so you get less rippling. As long as the ripple doesn't get below a certain value, e.g. +12VDC, we can use that to power a voltage regulator, which simply stabilizes the wobbly input voltage to a specific output voltage. Full-wave rectifiers are better here than half-wave, since there is less timetween the high and low pulses, resulting in a more stable output.


Schematics are shown for full-wave rectification using a center-tapped transformer and for half-wave rectification if you are interested. For the rest of this Instructable, I will be using a variation of the full-wave schematic shown in image 1

You will only need a few parts for this circuit. I salvage parts where I can, so you may even be able to salvage the entire AC/DC conversion circuit from something that already has it built onto a board. The side of the transformer where the AC power cable connects is the primary winding side. The secondary winding side will be connected to the bridge rectifier. Use your multi-meter to carefully check the output voltage on the secondary pins when the power cable is plugged in. The reading should be 1/10 to 1/5 of your mains voltage, which is 12-24VAC in the U.S. If you are using 220VAC mains, you will need a transformer that has a 10:1 step down ratio because most voltage regulators can't handle more than about 35VDC input. Also be aware of the power requirements for your circuit. Transformers do have current limitations and voltage regulators can usually only source 1 amp max, and only when you have a proper heat sink attached. Fuses are a good thing if you're unsure.

No comments:

Post a Comment

Post Top Ad

Pages