BU-405: Charging with a Power Supply
Batteries can be charged manually with a power supply featuring user-adjustable voltage and current limiting. I stress manual because charging needs the know-how and can never be left unattended; charge termination is not automated. Because of difficulties in detecting full charge with nickel-based batteries, I recommend charging only lead and lithium-based batteries manually.
Lead Acid
Before connecting the battery, calculate the charge voltage according to the number of cells in series, and then set the desired voltage and current limit. To charge a 12-volt lead acid battery (six cells) to a voltage limit of 2.40V, set the voltage to 14.40V (6 x 2.40). Select the charge current according to battery size. For lead acid, this is between 10 and 30 percent of the rated capacity. A 10Ah battery at 30 percent charges at about 3A; the percentage can be lower. An 80Ah starter battery may charge at 8A. (A 10 percent charge rate is equal to 0.1C.)
Observe the battery temperature, voltage and current during charge. Charge only at ambient temperatures in a well-ventilated room. Once the battery is fully charged and the current has dropped to 3 percent of the rated Ah, the charge is completed. Disconnect the charge. Also disconnect the charge after 16–24 hours if the current has bottomed out and cannot go lower; high self-discharge (soft electrical short) can prevent the battery from reaching the low saturation level. If you need float charge for operational readiness, lower the charge voltage to about 2.25V/cell.
You can also use the power supply to equalize a lead acid battery by setting the charge voltage 10 percent higher than recommended. The time in overcharge is critical and must be carefully observed. (See BU-404: What is Equalizing Charge)
A power supply can also reverse sulfation. Set the charge voltage above the recommended level, adjust the current limiting to the lowest practical value and observe the battery voltage. A totally sulfated lead acid may draw very little current at first and as the sulfation layer dissolves, the current will gradually increase. Elevating the temperature and placing the battery on an ultrasound vibrator may also help in the process. If the battery does not accept a charge after 24 hours, restoration is unlikely. (See BU-804b: Sulfation and How to Prevent it)
Lithium-ion
Lithium-ion charges similarly to lead acid and you can also use the power supply but exercise extra caution. Check the full charge voltage, which is commonly 4.20V/cell, and set the threshold accordingly. Make certain that none of the cells connected in series exceeds this voltage. (The protection circuit in a commercial pack does this.) Full charge is reached when the cell(s) reach 4.20V/cell voltage and the current drops to 3 percent of the rated current, or has bottomed out and cannot go down further. Once fully charged, disconnect the battery. Never allow a cell to dwell at 4.20V for more than a few hours. (See BU-409: Charging Lithium-ion)
Please note that not all Li-ion batteries charge to the voltage threshold of 4.20V/cell. Lithium iron phosphate typically charges to the cut-off voltage of 3.65V/cell and lithium-titanate to 2.85V/cell. Some Energy Cells may accept 4.30V/cell and higher. It is important to observe these voltage limits
NiCd and NiMH
Charging nickel-based batteries with a power supply is challenging because the full-charge detection is rooted in a voltage signature that varies with the applied charge current. If you must charge NiCd and NiMH with a regulated power supply, use the temperature rise on a 0.3–1C rapid charge as an indication of full charge. When charging at a low current, estimate the level of remaining charge and calculate the charge time. An empty 2Ah NiMH will charge in about 3 hours at 750–1,000mA. The trickle charge, also known as maintenance charge, must be reduced to 0.05C.
BU-405: Charging with a Power Supply
Batteries can be charged manually with a power supply featuring user-adjustable voltage and current limiting. I stress manual because charging needs the know-how and can never be left unattended; charge termination is not automated. Because of difficulties in detecting full charge with nickel-based batteries, I recommend charging only lead and lithium-based batteries manually.
Lead Acid
Before connecting the battery, calculate the charge voltage according to the number of cells in series, and then set the desired voltage and current limit. To charge a 12-volt lead acid battery (six cells) to a voltage limit of 2.40V, set the voltage to 14.40V (6 x 2.40). Select the charge current according to battery size. For lead acid, this is between 10 and 30 percent of the rated capacity. A 10Ah battery at 30 percent charges at about 3A; the percentage can be lower. An 80Ah starter battery may charge at 8A. (A 10 percent charge rate is equal to 0.1C.)
Observe the battery temperature, voltage and current during charge. Charge only at ambient temperatures in a well-ventilated room. Once the battery is fully charged and the current has dropped to 3 percent of the rated Ah, the charge is completed. Disconnect the charge. Also disconnect the charge after 16–24 hours if the current has bottomed out and cannot go lower; high self-discharge (soft electrical short) can prevent the battery from reaching the low saturation level. If you need float charge for operational readiness, lower the charge voltage to about 2.25V/cell.
You can also use the power supply to equalize a lead acid battery by setting the charge voltage 10 percent higher than recommended. The time in overcharge is critical and must be carefully observed. (See BU-404: What is Equalizing Charge)
A power supply can also reverse sulfation. Set the charge voltage above the recommended level, adjust the current limiting to the lowest practical value and observe the battery voltage. A totally sulfated lead acid may draw very little current at first and as the sulfation layer dissolves, the current will gradually increase. Elevating the temperature and placing the battery on an ultrasound vibrator may also help in the process. If the battery does not accept a charge after 24 hours, restoration is unlikely. (See BU-804b: Sulfation and How to Prevent it)
Lithium-ion
Lithium-ion charges similarly to lead acid and you can also use the power supply but exercise extra caution. Check the full charge voltage, which is commonly 4.20V/cell, and set the threshold accordingly. Make certain that none of the cells connected in series exceeds this voltage. (The protection circuit in a commercial pack does this.) Full charge is reached when the cell(s) reach 4.20V/cell voltage and the current drops to 3 percent of the rated current, or has bottomed out and cannot go down further. Once fully charged, disconnect the battery. Never allow a cell to dwell at 4.20V for more than a few hours. (See BU-409: Charging Lithium-ion)
Please note that not all Li-ion batteries charge to the voltage threshold of 4.20V/cell. Lithium iron phosphate typically charges to the cut-off voltage of 3.65V/cell and lithium-titanate to 2.85V/cell. Some Energy Cells may accept 4.30V/cell and higher. It is important to observe these voltage limits
NiCd and NiMH
Charging nickel-based batteries with a power supply is challenging because the full-charge detection is rooted in a voltage signature that varies with the applied charge current. If you must charge NiCd and NiMH with a regulated power supply, use the temperature rise on a 0.3–1C rapid charge as an indication of full charge. When charging at a low current, estimate the level of remaining charge and calculate the charge time. An empty 2Ah NiMH will charge in about 3 hours at 750–1,000mA. The trickle charge, also known as maintenance charge, must be reduced to 0.05C.
No comments:
Post a Comment