The 555 timer IC is one of the most useful Integrated circuits, utilized in various electronic projects. It’s a low-cost, widely used precision timing device that is used as a basic timer to create single pulses or large time delays, or as a relaxation, oscillator to generate a string of stabilized waveforms with duty cycles ranging from 50 to 100%. Since its internal circuitry includes a voltage divider network; made up of three 5K resistors, thus the name is 555. This IC may be used to produce precise time delays and oscillations. So, here in this article, we will discuss the Top 10 Easy Electronics Projects using NE555 Timer IC for Beginners.
Working Explanation
In this Servo Motor Driver Circuit, we use IC 555 as an astable multivibrator and it generates the pulses at the output with two diverse duration. The pulse time of the output of the 555 timer IC depends on the timing resistor and Capacitor wired into the circuit.
When the switch SW1 is closed, the 555 clock IC generates a long-duration pulse, and the servo rotates in the clockwise direction And, when the switch SW2 gets closed, the 555 clock IC produces a short-duration high pulse and the servomotor rotates antilock wise. Thus, this is how the circuit works.
Working Explanation
When light falls on the exterior side of the Light Dependent Resistor, the circuit flashes and makes a sound. The 555 timer IC, which is wired into the circuit as an astable multivibrator, is an important aspect of the circuit. As a darkness sensor, an LDR is employed. The circuit is controlled by a 10k variable resistor, which stimulates the alarm at the required amount of darkness. A speaker with an impedance of 8 ohms is connected to a capacitor with a capacitance of 4.7 microfarads and generates sound as an output. The frequency of the sound can be modified by changing the value of a 0.05 microfarad capacitor. The circuit works with a DC voltage range of 9 to 12 volts.
Working Explanation
This Clap ON Clap OFF Switch consists of two stages. The first one is the detecting stage having a Condenser microphone and 555 timer IC which is configured as a monostable multivibrator The output from the microphone is given to the triggered input pin of the timer IC. In the second stage, the output from the timer IC is given to the clock input of the D flip flop. In other words, you can say that the timer Ic s providing a clock to flip-flop IC. The D flip flop recognizes a positive edge of the pulse and changes its state accordingly. Output from the flip flop is given at the base of the transistor which drives the relay.
When you clap near the condenser microphone, it generates some spike which will trigger the timer IC, and hence Ic generates a mono pulse which is taken by flip flop IC. The flip flop detects the positive edge in the pulse and changes its state to ON or OFF depending on the current state.
The 555 timer IC is one of the most useful Integrated circuits, utilized in various electronic projects. It’s a low-cost, widely used precision timing device that is used as a basic timer to create single pulses or large time delays, or as a relaxation, oscillator to generate a string of stabilized waveforms with duty cycles ranging from 50 to 100%. Since its internal circuitry includes a voltage divider network; made up of three 5K resistors, thus the name is 555. This IC may be used to produce precise time delays and oscillations. So, here in this article, we will discuss the Top 10 Easy Electronics Projects using NE555 Timer IC for Beginners.
Working Explanation
In this Servo Motor Driver Circuit, we use IC 555 as an astable multivibrator and it generates the pulses at the output with two diverse duration. The pulse time of the output of the 555 timer IC depends on the timing resistor and Capacitor wired into the circuit.
When the switch SW1 is closed, the 555 clock IC generates a long-duration pulse, and the servo rotates in the clockwise direction And, when the switch SW2 gets closed, the 555 clock IC produces a short-duration high pulse and the servomotor rotates antilock wise. Thus, this is how the circuit works.
Working Explanation
When light falls on the exterior side of the Light Dependent Resistor, the circuit flashes and makes a sound. The 555 timer IC, which is wired into the circuit as an astable multivibrator, is an important aspect of the circuit. As a darkness sensor, an LDR is employed. The circuit is controlled by a 10k variable resistor, which stimulates the alarm at the required amount of darkness. A speaker with an impedance of 8 ohms is connected to a capacitor with a capacitance of 4.7 microfarads and generates sound as an output. The frequency of the sound can be modified by changing the value of a 0.05 microfarad capacitor. The circuit works with a DC voltage range of 9 to 12 volts.
Working Explanation
This Clap ON Clap OFF Switch consists of two stages. The first one is the detecting stage having a Condenser microphone and 555 timer IC which is configured as a monostable multivibrator The output from the microphone is given to the triggered input pin of the timer IC. In the second stage, the output from the timer IC is given to the clock input of the D flip flop. In other words, you can say that the timer Ic s providing a clock to flip-flop IC. The D flip flop recognizes a positive edge of the pulse and changes its state accordingly. Output from the flip flop is given at the base of the transistor which drives the relay.
When you clap near the condenser microphone, it generates some spike which will trigger the timer IC, and hence Ic generates a mono pulse which is taken by flip flop IC. The flip flop detects the positive edge in the pulse and changes its state to ON or OFF depending on the current state.
No comments:
Post a Comment