Post Top Ad

Friday, December 30, 2022

on video NEVER be confused by HORSEPOWER and TORQUE again - HP and TORQUE EXPLAINED in the MOST VISUAL WAY


 In today's video I'll be using Legos to give you the most visual explanation and demonstration of horsepower and torque. If you have ever been confused by horsepower and torque I guarantee that after watching this video these two concepts will never confuse you again. 


So let's get started, and we're starting with Torque. Now this LARGE Lego motor outputs 0.14 Nm and this smaller LEGO motor outputs 0.03 Newton meters. What's a newton meter? Well a newton meter is a MEASURE of torque. It measures HOW MUCH torque is being generated. 


What is torque? The simplest explanation of torque is that it's a ROTATIONAL FORCE. It's the ROTATIONAL equivalent of LINEAR FORCE. 

When you take this bolt and push it you're applying linear force to it. But when you decide to bolt it down you're applying torque to it. In both cases a certain amount of force is present but what's different is the direction of that force. 

So our LEGO motors are outputting a certain amount of torque that we have expressed in Newton Meters. 

1 newton meter of torque simply equals the force of 1 Newton applied at the end of an arm that is one meter long. So for example if we take this bolt and use this wrench which is one meter long and apply a force of 1 newton at it's end the resulting torque present at the bolt will be ONE NEWTON-METER. Newton meters confuse you? No problem, because torque can also easily be expressed in foot pounds. 

1 foot pound of torque is equal to the force of 1 pound being applied at the end of an arm that is 1 foot long. 

So in this scenario I'm using the stored energy in my muscles to generate torque at the bolt. Our Lego motors are doing the same thing, they're using the electrical energy stored in these batteries to generate torque or rotational force, and as we have seen our large Lego motor is outputting more torque than our small motor. This difference in torque can EASILY BE FELT. If we install a small shaft into our motor we can feel the difference in rotational force coming from these motors. The difference in torque output is very obvious and the large motor feels much stronger and it's very difficult to stop it. Just like our LEGO motors THE MOTORS in modern electric cars use the stored energy in their battery packs to generate torque. On the other hand internal combustion engines rely on the energy stored in fossil fuels to generate torque.


The key word in the word horsepower is POWER. What is power? Power is the rate at which work is done, in more simple terms power measures how often a certain force is applied over a given period of time. You could even call power = activity. It measures how many times you can repeat the same action over a given period of time. 

This means that torque is influenced by only one factor – the amount of rotational force
But horsepower is influenced by two factors – the amount of force and how many times that force can be exerted over a given period of time. 

Now we're going to attach these blocks onto the shafts of our Lego motors so that we can more easily observe how fast each of them rotates. 
As you can see the small motor actually rotates faster that the large motor. In fact over the period of one minute the small motor makes 275 rotations while the large motor makes only 146 rotations. This means that although it can't generate as much torque as the large motor, the small motor applies it's torque at a greater rate over the same period of time. This means that while torque can be both felt and observed horsepower cannot be felt in the same sense. If we put our fingers against the shaft we're feeling the torque, we're feeling the force against our fingers. When we're sitting inside a car and the car accelerates we're again feeling the force pushing us against the seat. We can only feel the amount of force, and because torque is only a force we can feel it. But horsepower isn't only a force, it's a measure of the rate of force. In the case of engines and motors it is the amount of rotational force or torque multiplied by rotations per minute or rpm.


 In today's video I'll be using Legos to give you the most visual explanation and demonstration of horsepower and torque. If you have ever been confused by horsepower and torque I guarantee that after watching this video these two concepts will never confuse you again. 


So let's get started, and we're starting with Torque. Now this LARGE Lego motor outputs 0.14 Nm and this smaller LEGO motor outputs 0.03 Newton meters. What's a newton meter? Well a newton meter is a MEASURE of torque. It measures HOW MUCH torque is being generated. 


What is torque? The simplest explanation of torque is that it's a ROTATIONAL FORCE. It's the ROTATIONAL equivalent of LINEAR FORCE. 

When you take this bolt and push it you're applying linear force to it. But when you decide to bolt it down you're applying torque to it. In both cases a certain amount of force is present but what's different is the direction of that force. 

So our LEGO motors are outputting a certain amount of torque that we have expressed in Newton Meters. 

1 newton meter of torque simply equals the force of 1 Newton applied at the end of an arm that is one meter long. So for example if we take this bolt and use this wrench which is one meter long and apply a force of 1 newton at it's end the resulting torque present at the bolt will be ONE NEWTON-METER. Newton meters confuse you? No problem, because torque can also easily be expressed in foot pounds. 

1 foot pound of torque is equal to the force of 1 pound being applied at the end of an arm that is 1 foot long. 

So in this scenario I'm using the stored energy in my muscles to generate torque at the bolt. Our Lego motors are doing the same thing, they're using the electrical energy stored in these batteries to generate torque or rotational force, and as we have seen our large Lego motor is outputting more torque than our small motor. This difference in torque can EASILY BE FELT. If we install a small shaft into our motor we can feel the difference in rotational force coming from these motors. The difference in torque output is very obvious and the large motor feels much stronger and it's very difficult to stop it. Just like our LEGO motors THE MOTORS in modern electric cars use the stored energy in their battery packs to generate torque. On the other hand internal combustion engines rely on the energy stored in fossil fuels to generate torque.


The key word in the word horsepower is POWER. What is power? Power is the rate at which work is done, in more simple terms power measures how often a certain force is applied over a given period of time. You could even call power = activity. It measures how many times you can repeat the same action over a given period of time. 

This means that torque is influenced by only one factor – the amount of rotational force
But horsepower is influenced by two factors – the amount of force and how many times that force can be exerted over a given period of time. 

Now we're going to attach these blocks onto the shafts of our Lego motors so that we can more easily observe how fast each of them rotates. 
As you can see the small motor actually rotates faster that the large motor. In fact over the period of one minute the small motor makes 275 rotations while the large motor makes only 146 rotations. This means that although it can't generate as much torque as the large motor, the small motor applies it's torque at a greater rate over the same period of time. This means that while torque can be both felt and observed horsepower cannot be felt in the same sense. If we put our fingers against the shaft we're feeling the torque, we're feeling the force against our fingers. When we're sitting inside a car and the car accelerates we're again feeling the force pushing us against the seat. We can only feel the amount of force, and because torque is only a force we can feel it. But horsepower isn't only a force, it's a measure of the rate of force. In the case of engines and motors it is the amount of rotational force or torque multiplied by rotations per minute or rpm.

No comments:

Post a Comment

Post Top Ad

Pages